Design, Efficiency and Materials for Carbon/Air Fuel Cells

Direct Carbon Fuel Cell Workshop NETL, Pittsburgh PA

by

John F. Cooper

Lawrence Livermore National Laboratory
PO Box 808 L-352, Livermore CA 94551
Tel. (925) 423-6649 Fax 422-0049 email cooper3@LLNL.gov
July 30, 2003

Topics

- Efficiency:
 - Coulombic and electrochemical
- Design considerations
 - Specific challenges
 - Advantages relative to MCFC
- An angled cell for particulate fuel
- A rigid block fuel cell for distributed power
- Considerations of efficiency of fuel production
- Considerations of cost
- Research and development emphasis

Brief Summary of Electrons/Mole of Graphitic Carbon Anodes

Conditions	Method used	Results	Reference
T = 700 C, graphite, carbonate	Δ W, dV/dt ~ I/nF	n = 4	Tamaru & Kamada [1935]
$T = 400-900 \text{ C},$ graphite, CO_3^{2-}	dV/dT, CO/CO ₂	n = 4	Hauser [1964]
T = 700-800 C, turbostratic,coke	dV/dt , some ΔW	n = 4	Weaver [1977-9]
$T = 700 \text{ C, } CO_3^{2-}$ various carbons	$d[CO_2]/dt = I/nF$	n = 4	Vutetakis [1984]
$T = 900-1100 \text{ C},$ $NaAlF_4 + Al_2O_3,$ turbo & graphite	$d[CO_2]/dt = I/nF$	n = 4	Haupin; [1981]

The defining reaction is $C + O_2 = CO_2$

High Efficiency Derives from a Favorable Cell Thermodynamics

Fuel	Theoretical limit = $\Delta G(^{\circ}T)/\Delta H^{\circ}_{std}$	Utilization efficiency, µ	$V(i)/V(i=0) = \varepsilon_{v}$	Actual efficiency = $(\Delta G/\Delta H_{std}^0)(\mu)(\epsilon_v)$
C	1.003	1.0	0.80	0.80
CH ₄	0.895	0.80	0.80	0.57
H_2	0.70	0.80	0.80	0.45

Efficiency of a fuel cell or battery is defined:

- **≡** (electrical energy out) / (Heat of combustion (HHV) of fuels input)
- = [theoretical efficiency G/H][utilization fraction μ][voltage efficiency ε_v]
- $= [\Delta G(T)/\Delta H^{\circ}][\mu][V/V^{\circ}] = [\mu][nFV]/\Delta H^{\circ}$

--where
$$\Delta G(T) \equiv - nFV^{o} \equiv \Delta H - T\Delta S$$

Typical C/air efficiency is 80%

Degraded by energy cost of fuels production

The pyrolysis of fuel oil followed by fuel cell conversion yields highest potential efficiency

- Without waste heat recovery: $\varepsilon = 72\% \Delta H_{std} = 77\% LHV$ (modeled as decane)
- System is <u>mechanically simple</u> without reforming or heat engines
- Pyrolysis consumes 3.6% of the HHV of fuel oil
- Efficiency increased to >80% LHV by recycling waste heat to pyrolyze fuel oil

This approach uses H₂/SOFC in simplest, most robust form Avoids the entropy increases associated with gasification Mechanically simple

DCFC: Unique Set of Difficult Challenges

- Transport of carbon solids into cells
 - Pneumatic or salt pumping for large systems
 - Low rate of anode fuel volume transfer: $1:4000 \sim \text{solid}:H_2$
- All fuel in operating cell must be subject to continuous polarization of
 ~ 20 mV to avoid Boudouard reaction
 - But no losses on standby
 - Requires electrodrodes to be thin pastes or shielded blocks
- Sulfur emerges as toxic COS or COS₂
- Spalling corrosion limits metals for construction or current collection
 - Graphitize cells and anode current collectors
- Trade: higher cost ash-free carbons for cleaned coal
 - Engineering of salt recovery

DCFC: Some Simplifying Aspects, Too

- Fixed C, CO₂ activities:
 - very large anodes, fixed potential, full utilization in single pass
- C/melt slurry or paste is not-explosive in air
 - Relaxes demands on cell and separator for isolation of fuel and air
- Anhydrous fuels: no steam corrosion, embrittlement
- Higher T: non-Li salts, hydraulic salt recovery
- Carbonate flux: protects separator, collector
- Solvent extracted carbons: salt lasts life of cell
 - − cleaned coal ~ month
- Mechanical simplicity: low S swing, no need for bottoming cycles
- As truck fuel: no fuel storage problem

Protection of Separator by Salt Flux

- Molten salt continuously generated at cathode
 - Separator protected by flux = 2(i/4F)
- Should offset degradation of separator by coal-entrained solids

Tilted Configuration Controls Electrolyte Wetting and Flooding

• Allows periodic replacement of electrolyte

JFC:Aug

• Maintains constant anode wetting as fuel is converted

Experimental Approach: Idealized Fuel Cell Geometry, Full Diagnostics for Rigid Plate Anodes

- Independent reference electrodes and voltage probes
- Determine anode off-gas composition as function of current, temp
 - Isolation of reaction zone in rigid carbon block

Extraction and Use of Carbon from Coal

Hydraulic Cleaning of Coal

Pulverization and Hydraulic Separation from Ash & Pyrite

- Hydraulic separation of C (<1 % S, ash) from pyrite, ash
 - 65 kWh/ton (98 % retention of heating value)
 - Net coal-to-electricity efficiency 78 %
- Total cost 60/ton = 0.8 g/kWh
- But: high ash requires further cleaning or periodic electrolyte exchange

How Often Must Electrolyte Be Replaced?

- Assume electrolyte equal mass to carbon fuel
- Assume electrolyte can tolerate 0.25 g-ash/cm²
- Rate of carbon fuel additions: $1 \text{ kA/m}^2 \sim 0.25 \text{ g/cm}^2\text{-day}$
- Interval between electrolyte replacement/recycle
 - 0.5% ash—hydraulic cleaned coal 200 days (twice yearly)
 - 0.05% ash—solvent extracted coal 5.5 years (life of cell)
 - 0.01% ash—pyrolyzed oil N/A
 - For common fuels under consideration, cost of electrolyte exchange is insignificant
 - Lowest recycle cost if Na/K eutectic is used

L

Summary: Efficient Processes for Cleaning Coal

- UK: hydraulic separation
 - grind to 30 μm; baking to remove mid-BTU gas; low-ash product
- UK-process: extraction of pitch with anthracene oil
 - 425 °C, 200 atm; no hydrogenation; 40-70% yield; 0.05-0.1 % ash
- WVU-process: extraction of pitch with n-methyl pyrrolidone
 - Ambient pressure, 200 °C; 40-50% yield; 0.05-0.1 % ash

Process	Efficiency	Yield	%Ash	% S	Cost
UK-hydro	98%?	100%	0.5-1	1-2	\$60/ton, \$3/GJ 0.8 ¢-fuel/kWh
UK-solvent	?	40-70%	0.05	0.5	\$200/ton, 2.4 ¢-fuel/kWh
WVU-solvent	?	40-50%	0.05	0.5-1	\$78-140/ton, 1-2 ¢-fuel/kWh

Recommended R&D

- Engineering of refueled system on ~ 1 kW scale for generic C
- Develop cell materials (e.g., highly graphitic carbon) that resist sulfur corrosion at 650-750 °C
- Management of ash and melt recovery
 - Systems level
 - CO₂ feed to air stream? May not be required
- Re-examination of solvent extraction for fuels production
 - Radically different constraints from advanced materials production
- Adaptation of MCFC cathodes and catalysts for DCFC.

Priority R&D Emphasis:

Move rapidly to 1 kW demonstrations using multiple technologies

Initial Hardware Cost Estimates

Stack cost ~\$250/KW at 2 kW/m²

Component or factor	Basis	Cost \$/kW
Zirconia fabric	Zircar, Inc. retail	100
	price \$200/m ²	
Nickel felt	Eltech, Inc. \$20/m ²	10
	retail price	
Stainless steel lid	Ni plated SS frame,	38
	\$5/lb	
Graphite base, collector	\$1.00/lb design	10
Assembly	20% parts	32
G&A, profit	20% parts and labor	48
Total		\$237

Sources of power	Capacity in	Cost to
	kilowatts	build/kW
Coal-fired plant	300,000-400,000	\$900-1,300
Advanced gas turbine	400,000-1,000,000	\$650-900
Internal combustion	500-5,000	\$400-625
generator		
Microturbine	25-300	\$450*-750
Fuel cell	2-3,000	\$500*-3,000
Wind power	700-5,000	\$1,000-1,500
Solar panels	1-500	\$1,500*-6,500

^{*}Target cost, if production cost declines as projected
Source: Electric Power Research Institute